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One of the most promising tools for application in polymer reaction engineering 
processes is neural network. Neural networks have the ability to learn the behaviour of a 
process and the relationship between groups of variables, and have been widely applied 
to process modelling and control. This method has attracted much attention because it 
can handle complex and nonlinear problems, and requires less processing time than 
conventional methods. Data from a deterministic model were used to feed a neural 
network, which was used to build an inverse model of the emulsion polymerization of 
styrene. After training and test, neural network can help in the optimization of the 
process, predicting operating conditions that produce polymers and latexes with desired 
properties such as melt flow index, tensile strength and number of particles per litre of 
water. 
 
1. Introduction 
Among the techniques for the production of polymers, emulsion polymerization has a 
great industrial importance, accounting for a 20 million ton per year production (Asua, 
2004). Examples of commercial products are styrene/butadiene rubber, polyvinyl 
acetate, polymethacrilates and polytetrafluoroethylene (e.g. Teflon®). Emulsion 
polymerization can be defined as a complex heterogeneous process in which the 
monomers are dispersed in a continuous phase with an emulsifier, and polymerized by 
free-radical mechanism. One of the greatest challenges in the polymer industry is the 
optimization of the polymerization reactors, especially when polymers with certain 
quality and productivity are required. A deterministic model is able to predict properties 
of a polymer for known operating conditions of the reactor, and it gives important 
information about the phenomenas taking place inside the reactor. In an emulsion 
process a deterministic model can predict for example how the average number radicals 
per particle are changing with conversion, or how the concentration of monomer inside 
the particles is decreasing with time. On the other hand, the inverse deterministic model 
of complex processes such as those in dispersed medium is even more difficult and 
optimization techniques must be involved. An inverse model could directly relate 
desired end-product characteristics with input reactor conditions. An interesting 
alternative to deterministic models is the application of trained neural networks, which 



could predict the operating conditions of the reactor that could produce polymers with 
specific properties. Neural networks are able to deal with complex systems, and have 
the ability to mimic the capacity of the human brain to learn from examples. Neural 
networks are computational tools that are widely used both in the academic and 
commercial areas for the solution of several kinds of problems (Baughaman e Liu, 
1995). Neural networks are able to produce fast and reliable the results to several input 
conditions at the same time. In this work supervised neural networks were applied to the 
inverse modelling of the emulsion polymerization of styrene. 
 
2. Methodology For Network Simulation 
In this work the network simulations were performed in a program implemented with 
the backpropagation algorithm. Many authors have shown that backpropagation is 
efficient to deal successfully with several complex problems, including inverse 
modelling (for example Savkovic-Stevanovic, 1996, Köker et al., 2004, Mikami et al., 
2004). Backpropagation is an algorithm ease to implement, and require the use of only 
two parameters: learning rate and momentum term. The simulator was implemented 
with two hidden layers, two transfer functions (sigmoidal a hyperbolic tangent), and two 
methods for weights and bias initialization (using a Gaussian distribution or small 
random values). Seven variables were set in the input layer: conversion, number of 
polymer particles per litre of water, number-average molecular weight, weight-average 
molecular weight, polymer particle diameter, melt flow index and tensile strength. All 
the variables in the input layer, with the exception of conversion, represent properties of 
the latex and polymer. Conversion was included as restrictive variable in order to 
contribute to the reduction of the occurrence of multiple responses by the network. 
The network was built to predict four operating conditions: styrene, initiator and 
emulsifier concentration in the feed stream and process temperature. The ranges of the 
variables used are shown in Table 1.  
 
 

Table 1: Range Of The Variables Used In The Network Simulations. 
Variable Neuron Lower Value Higher Value 
T (oC) Output 50 70 
Styrene (mol/l) Output 1.05 9.60 
Emulsifier (mol/l) Output 0.016 0.087 
Initiator (mol/l) Output 0.00043 0.037 

nM  Input 6.9x105 5.3x106 

wM  Input 1.2x106 1.2x106 

Np (particle/l water) Input 7.2x1016 3.6x1018 
Particle diameter (dm2) Input 54 117 

Conversion (%) Input 70 99 
σ = Tensile strength (psi) Input 6.7x103 7.3x103 
MI = Melt flow index (g/min) Input 8.11x10-5 6.3x10-2 
 
 
 



The training set used 170 data, and the test set used 30 examples arbitrarily chosen. The 
data used in the network simulations were obtained by a deterministic model for the 
homopolymerization of styrene (Contant, 2007). The reactions involved potassium 
persulfate (KPS) as initiator and sodium dodecil sulfate (SDS) as emulsifier. Average 
molecular weights were obtained by integration of the molecular weight distribution 
(Gilbert, 1995). Melt flow index and tensile strength were calculated by the equations 
shown in Valappil and Georgakis, 2002.  
 
3. Results And Discussion 
Several networks were trained with different values of hidden layers, hidden neurons, 
learning rate and momentum term. The best configuration, leading to the best results, 
was selected by the simulator, and it is shown in Figure 1. One hidden layer with 5 
neurons was used. Learning rate was set as 0.3, and momentum term was defined as 0.8.  
The best network performance was achieved when sigmoidal transfer functions were 
used in all neurons, and weights and bias were initialized with small random values 
instead of a Gaussian distribution. 
 
 

 
Figure 1: Configuration of the Selected Neural Network. 
 
 
Figure 2 shows comparison between simulated and desired results for the four operating 
conditions (concentration of styrene, concentration of emulsifier, concentration of 
initiator and temperature). Data sets composed of 30 examples of inputs-outputs are 
compared in Figure 2, some of them exhibiting similar values. Determination 
coefficients are shown in each plot. A good agreement was found in all cases (R2 close 
to 1). 
The training and test error profiles are shown in Figure 3. Test errors were always 
diminished smoothly with iterations. 
After obtaining the weights and bias in the training/test phases, the neural network is 
ready to suggest operating conditions to the desired properties. Several properties could 
be fed to the simulator at the same time, and reliable results of operating conditions 
could be generated quickly. Some examples of operating conditions that could be 
predicted by the neural network for a given set of polymer and latex properties are 
shown in Table 2. 
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Figure 2: Neural Network Results Versus Desired Values In The Emulsion 
Polymerization Of Styrene: (a) Styrene Concentration, (b) Emulsifier Concentration, (c) 
Initiator Concentration and (d) Temperature. 
 
 

0

0,02

0,04

0,06

0 1000 2000 3000

Iteration

Er
ro

r

Training

Test

 
Figure 3: Evolution of Training And Test Errors In The Neural Network Simulations. 
 
 
 



Table 2: Examples of Operating Conditions That Could Be Predicted By Trained 
Networks.  
Network Inputs Network Output 
x 
(%) 

Np/lwater 
wM  nM  dp 

(dm2) 
MI 
(g/min) 
 

σ 
(psi) 

[M]o 
(mol/l)

[I]o 
(mol/l) 

[Emul]o 
(mol/l) 

T 
(oC) 

99 5x1017 3x106 1x106 93 3.4x10-3 7x103 2.4 3.4x10-3 3x10-2 60 
71 7x1016 1x105 7x105 117 6.3x10-2 7x103 1.1 4.3x10-4 2x10-2 70 
91 4x1017 4x106 3x106 95 1.3x10-3 7x103 4.8 5x10-3 2x10-2 50 
 
 
4. Conclusion 
In this paper is illustrated how neural networks could be used to deal with an inverse 
modelling of a polymerization process. Homopolymerization of styrene at different 
temperatures was studied. Neural networks were trained and tested using data from a 
deterministic model previously developed. An interesting option could be to feed and 
train the networks with data from an industrial plant. In this case, the application of 
neural networks would be very interesting because neural networks are able to deal with 
data with noise or outliers that common in industrial data, and the training of the 
networks may require large data-bases, with are easily available in industrial operations.  
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